Granger Causality Analysis Based on Quantized Minimum Error Entropy Criterion
نویسندگان
چکیده
منابع مشابه
Quantized Minimum Error Entropy Criterion
Comparing with traditional learning criteria, such as mean square error (MSE), the minimum error entropy (MEE) criterion is superior in nonlinear and non-Gaussian signal processing and machine learning. The argument of the logarithm in Renyis entropy estimator, called information potential (IP), is a popular MEE cost in information theoretic learning (ITL). The computational complexity of IP is...
متن کاملOn the Smoothed Minimum Error Entropy Criterion
Recent studies suggest that the minimum error entropy (MEE) criterion can outperform the traditional mean square error criterion in supervised machine learning, especially in nonlinear and non-Gaussian situations. In practice, however, one has to estimate the error entropy from the samples since in general the analytical evaluation of error entropy is not possible. By the Parzen windowing appro...
متن کاملISAR Image Improvement Using STFT Kernel Width Optimization Based On Minimum Entropy Criterion
Nowadays, Radar systems have many applications and radar imaging is one of the most important of these applications. Inverse Synthetic Aperture Radar (ISAR) is used to form an image from moving targets. Conventional methods use Fourier transform to retrieve Doppler information. However, because of maneuvering of the target, the Doppler spectrum becomes time-varying and the image is blurred. Joi...
متن کاملLearning theory approach to minimum error entropy criterion
We consider the minimum error entropy (MEE) criterion and an empirical risk minimization learning algorithm when an approximation of Rényi’s entropy (of order 2) by Parzen windowing is minimized. This learning algorithm involves a Parzen windowing scaling parameter. We present a learning theory approach for this MEE algorithm in a regression setting when the scaling parameter is large. Consiste...
متن کاملFiber-centered Granger Causality Analysis
Granger causality analysis (GCA) has been well-established in the brain imaging field. However, the structural underpinnings and functional dynamics of Granger causality remain unclear. In this paper, we present fibercentered GCA studies on resting state fMRI and natural stimulus fMRI datasets in order to elucidate the structural substrates and functional dynamics of GCA. Specifically, we extra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Signal Processing Letters
سال: 2019
ISSN: 1070-9908,1558-2361
DOI: 10.1109/lsp.2019.2890973